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Abstract: Allosteric drugs are usually more specific and have fewer side effects than orthosteric drugs targeting the same 

protein. Here, we overview the current knowledge on allosteric signal transmission from the network point of view, and 

show that most intra-protein conformational changes may be dynamically transmitted across protein-protein interaction 

and signaling networks of the cell. Allo-network drugs influence the pharmacological target protein indirectly using spe-

cific inter-protein network pathways. We show that allo-network drugs may have a higher efficiency to change the net-

works of human cells than those of other organisms, and can be designed to have specific effects on cells in a diseased 

state. Finally, we summarize possible methods to identify allo-network drug targets and sites, which may develop to a 

promising new area of systems-based drug design. 
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1. INTRODUCTION 

Fast and affordable drug development is a requirement 

that contrasts with the current state of drug discovery. Drug 

development often fails because the development process 

does not always take into account the vast complexity of the 

cell and the robustness of its networks. In recent years, sys-

tems level and network analyses have become increasingly 

applied methods in drug design [1-14].  

In this review, we first give a network-focused overview 

of how allosteric changes propagate within proteins, and 

how this signal transduction process can be extended to pro-

tein complexes and larger segments of protein-protein inter-

action and signaling networks. Further, we describe the 

benefits and the limitations of network-based methods to 

analyze allosteric action. Then we introduce the concept of 

allo-network drugs [15], i.e. drugs acting indirectly, via the 

inter-protein propagation of changes in cellular networks. 

We show that allo-network drugs may have special benefits 

in human cells, and may be designed to have specific effects 

on cells of diseased organisms. The review is concluded by 

the suggestion of several methods to identify allo-network 

drug targets and their binding sites including determination 

of network centralities, network hierarchy, controllability, 

assessment of perturbation propagation in networks, the 

analysis of correlated motions, reverse engineering methods 

to reveal central and less frequently used pathways, analysis 

of evolutionary conservation, as well as of biological 
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disease-related systems data or system-level responses of the 

cell to drugs. We conclude that the development of allo-

network drugs appears as a promising new trend in drug de-

sign. 

2. THE PROPAGATION OF ALLOSTERIC EFFECTS 
AND PROTEIN STRUCTURE NETWORKS 

2.1. The Concept of Allostery 

Several questions of protein dynamics such as the 

mechanism of allosteric changes gained much attention in 

the last century [16-22] but have not been completely eluci-

dated yet. The molecular mechanisms of allostery have been 

typically discussed in terms of two classical models, the 

Monod-Wyman-Changeux (MWC) [23] and the Koshland-

Némethy-Filmer (KNF) [24] models. Although these models 

were originally developed for describing allostery in homo-

oligomers, their modernized versions also apply to mono-

meric proteins and other types of allosteric systems [25]. 

Both models assume that the protein can exist in two major 

conformations (e.g. tense and relaxed or active and inactive). 

According to the MWC model, equilibrium exists between 

the two conformations at all times, and the binding of the 

allosteric effector only modifies this equilibrium, causing a 

population shift [26]. In contrast, the KNF model assumes 

that the new conformation does not pre-exist before the bind-

ing of the effector but is instead induced by the binding 

event through a series of sequential steps. Experimental evi-

dence supports the MWC model in many cases, such that it 

has been argued that it can claim victory [27], even though it 

has been acknowledged that local ligand-dependent move-

ments may occur in agreement with the KNF mechanism. 
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Others have argued that the MWC and KNF scenarios are 

just extremes of a range of possible allosteric mechanisms 

[28]. 

A modern extension of the MWC mechanism stresses 

that most proteins do not exist in only two possible states but 

form a large ensemble of states, and the allosteric change 

represents a redistribution of population intensities within 

this ensemble, i.e. a population shift [29]. In addition, allos-

tery may occur without a conformational change [30,31], 

which led to the new concept of dynamically driven allostery 

[32] and the notion that all proteins may be capable of being 

allosterically regulated. A recent classification of allosteric 

mechanisms considers the extent of conformational change, 

and whether the allostery is driven by enthalpy, entropy, or 

both [33]. 

2.2. Communication Pathways and Intra-Protein Net-

works 

Regardless of the particular mechanism of allostery, it is 

recognized that information is in some way transmitted from 

the allosteric site to the substrate site, which implies the exis-

tence of communication pathways within the protein. There-

fore, considerable experimental and computational effort has 

been devoted to discovering these pathways. It should be 

noted, though, that allostery has also been conceptually un-

derstood in purely thermodynamic terms, as in the ensemble 

view of allostery [34], which does not require the existence 

of specific pathways for the propagation of allosteric infor-

mation. 

The notion of intra-protein communication pathways in-

spires a network view of proteins. In this view, the protein is 

represented as a graph where nodes are (usually) amino acid 

residues and edges are defined based on some relationship 

between residues [35-45]. Communication from one site to 

another may thus occur along the edges of the graph. 

As detailed in the following examples, there are many 

ways of defining networks within proteins. The procedure 

may start with a single structure, several structures (e.g. inac-

tive and active forms), or an ensemble of structures obtained 

from molecular dynamics (MD) simulations or other ap-

proaches. Edges (weighted or unweighted) may be defined 

based on a simple distance cutoff criterion, interaction 

strength or energy, the comparison of structures, or an analy-

sis of the ensemble. Experimental results are also used to 

define various networks within proteins. 

2.3. Properties of Protein Structure Networks 

The properties of protein structure networks (networks 

based on static structures) have been studied in detail [35-

45]. When the network is defined based on a distance cutoff, 

interaction cutoff or energy cutoff, it undergoes a percolation 

transition in a narrow range of the cutoff as the size of the 

largest connected component increases to eventually cover 

the whole protein [40,46]. The clustering coefficient tends to 

be homogeneous in the protein core, and characteristic path 

lengths of residues have been shown to correlate well with 

residue fluctuations [39]. Hubs tend to connect secondary 

structure elements, and have a preference for certain amino 

acids (mainly aromatic ones and arginine) [40]. 

It has been shown that residues with a high closeness in-

dex in the network tend to be functionally important, and are 

often at active sites [47,48]. Networks spanning protein-

protein interfaces have also been analyzed, with the general 

finding that hot spots at such interfaces tend to occur in clus-

ters and are highly central [49-52]. In addition, protein struc-

ture networks have been used in studies of protein folding 

and unfolding [53-56]. 

2.4. Methods to Identify Allosteric Pathways in Intra-
Protein Networks 

Once an intra-protein network has been defined, various 

techniques can be used to find allosteric communication 

pathways within the network. One common method is to 

search for shortest paths connecting the allosteric and sub-

strate sites [57-65]. This method identifies the residues most 

frequently occurring along these shortest paths. Another 

concept that is often embraced is to consider the protein as a 

set of modules (subgraphs with many connections within 

them but few connections between them). It has been shown 

that many proteins have a modular architecture, with mod-

ules corresponding to (often functionally distinct) subdo-

mains. Residues between modules tend to be conserved and 

more rigid, and are thought to be involved in allosteric 

communication [66-69]. Several studies have employed the 

concept of modules or a related notion [69-71]. 

2.5. Statistical Coupling Analysis 

In 1999, Lockless and Ranganathan [72] published an in-

fluential paper that introduced the idea of allosteric commu-

nication pathways, which inspired many experimental and 

computational studies. In this paper, the authors used statisti-

cal coupling analysis (SCA), a technique that uses a multiple 

sequence alignment to identify a coevolving set of residues 

in a protein family, to identify in the PDZ protein family a 

sparse network of residues representing what they called 

evolutionarily conserved pathways of energetic connectivity. 

Point mutations have been used to experimentally confirm 

the energetic coupling between the residues in the network. 

This method was then applied to reveal the communication 

pathways in a number of other proteins [73-77], and the pre-

dictions of the original paper have been supported by NMR 

measurements [78]. Although these studies showed the suc-

cess of the SCA method, comparison with thermodynamic 

coupling data from double mutant cycles showed that while 

SCA does find some of the physically close, coupled resi-

dues, it does not find all of them [79]. Indeed, an exhaustive 

study using double mutant cycles found that coupling is not a 

special property of the residues in the coevolving network 

originally identified for the PDZ family [80]. A more recent 

lattice model study also noted some apparent discrepancies 

between SCA and mutational studies [81]. In spite of these 

apparent limitations, SCA continues to be successfully used 

in various studies [82-85]. 

2.6. Networks from Experiments 

Although there are many computational techniques to de-

tect allosteric communication pathways, it is difficult to dis-

cover those directly using experimental methods. As men-

tioned, SCA results were validated by mutational studies. 
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Energetic coupling between residues can be reliably meas-

ured by double mutant cycles. However, a full energetic de-

scription of an allosteric pathway requires the examination of 

higher-order couplings, which can only be performed by 

triple, quadruple, etc. mutants. Clearly, the number of re-

quired constructs quickly grows prohibitively high. In an 

impressive study, 46 different mutants were used to reveal a 

highly cooperative, sharply delineated allosteric pathway in a 

voltage-gated potassium channel [86]. Energetic couplings 

were found to be highly anisotropic, not corresponding to a 

distance relationship, which suggests that there is an actual 

pathway of successive physical deformations. 

NMR based techniques have been used to discover allos-

teric communication pathways in a number of proteins, with 

remarkable results [87,88]. Of special interest is the discov-

ery of dynamic couplings and allosteric behavior in a non-

allosteric protein, eglin c [89]. It was demonstrated that en-

ergy transmission is unidirectional, i.e. perturbing the protein 

at one site may elicit a change at another site, but this proc-

ess does not always occur in the reverse direction. The net-

works of dynamical couplings were revealed in several dif-

ferent mutants of eglin c, and were found to be different. In 

one mutant that showed subtle conformational changes from 

the wild-type protein, the network of dynamical couplings 

was not physically contiguous. The propagation of allosteric 

signals was explained by a change in residue rotamer popu-

lations [89]. 

Recently, a highly powerful technique named “chemical 

shift covariance analysis” (CHESCA) was developed and 

validated by mutational studies [90,91]. The method pro-

vides a detailed picture of both the structurally and the dy-

namically mediated allosteric changes, quantitatively de-

scribing the relative contribution of each residue to binding 

and allostery. 

2.7. Multiple Pre-Existing Pathways 

The growing number of experimental and computational 

studies of allosteric communication pathways led to the con-

cept that there are multiple pathways, which pre-exist before 

the binding of the allosteric effector, much like all functional 

conformations pre-exist in the conformational ensemble be-

fore an effector is bound [92]. Major and minor pathways 

may exist as suggested by the different effect of mutations 

upon the allosteric signal transmission. An MD based com-

putational analysis of communication pathways in Met-

tRNA synthase, however, indicated that only fragments of 

pathways are present in the apo states of the protein, with the 

full pathway only appearing when both substrates are bound 

[59]. This indicates the dependence of various pathways on 

subtle structural changes. A given pathway may only pre-

exist in a scarcely populated subset of the native ensemble 

and thus may not be readily detected in MD simulations. 

2.8. Allosteric Communication Pathways from Static 
Structures 

A number of studies simply used a single structure or a 

small number of structures to define networks, and extract 

communication pathways. In myosin, this method was used 

to identify shortest paths between the ATP binding site and 

the lever arm, defining a communication pathway by con-

served residues along the paths [60]. Another study identi-

fied those conserved residues that had the largest contribu-

tion to maintaining short paths within the protein structure 

network; the results showed good agreement with experi-

mental findings for 7 protein families [57]. For proteins un-

dergoing a clear conformational change due to allostery, 

pairs of structures can be used to obtain an insight into the 

allosteric mechanism [93]. It was found that a communica-

tion pathway is best identified by combining the network of 

rigid substructures with the network of contact rearrange-

ments [94]. 

For a better description of information flow in the net-

work, some studies use an information theoretical approach, 

converting the protein structure network into a Markovian 

model of information propagation [71,95-97]. By defining 

soft clusters in the Markovian network and identifying hub 

and ‘messenger’ residues, two main communication path-

ways were discovered in the GroEL-GroES system [71]. In a 

later study, it was shown that the commute time between two 

residues (as calculated from the Markov propagation model) 

is proportional to the fluctuations in the distance between 

these residues (as calculated from an elastic network model), 

thereby bridging the gap between information theory and 

physics based models [98]. 

2.9. Communication Pathways from Elastic Network 
Models 

Elastic network models (ENMs) are various coarse-

grained models of proteins that are typically defined from a 

single protein structure based on a residue-residue distance 

criterion, and studied by normal mode analysis [99]. Such 

models have proven successful for describing functional 

motions (including allosteric motions) in proteins, especially 

when the protein consists of large, rigid regions connected 

by more flexible linker regions [28,100]. ENMs have been 

used in various ways to define communication pathways. In 

the “structural perturbation method”, the response of the 

network to a local structural perturbation is mapped out to 

define an allostery wiring diagram [101,102]. The similar 

“perturbation response scanning” method examines the dis-

placement of residues when a force is applied on a selected 

residue [103]. A recent “electro-elastic network model” at-

tempts to account for hydration, and is used to study the ef-

fect of solvation upon allosteric changes [104]. 

2.10. Allosteric Communication from an Ensemble of 
Structures 

Recognizing the fact that proteins are dynamic entities, 

many techniques have been developed to define communica-

tion pathways in proteins from ensembles of structures. Mo-

lecular dynamics simulation (MD) is the most common 

method to generate ensembles of protein conformations. 

Once an MD trajectory is generated, the edges of a residue 

network are defined based on various quantities obtained by 

analyzing the trajectory. Edges between residues may be 

defined based on the correlation of displacements of the at-

oms (usually the C  atom) [59,61,64,105], the fluctuation of 

C -C  distances [106,107], generalized correlations [63], 

interaction energy correlations [108,109], mutual informa-

tion between torsion angles [110], and discretized backbone 
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conformations of segments [65]. In several cases, this net-

work was further filtered or combined with distance based 

networks to ensure physical contact between correlated resi-

dues. The resulting network was then analyzed by the same 

methods as those used for static structures, i.e. finding short-

est paths, hubs, clusters, modules, etc. 

A different ensemble-based approach has been adopted 

by Hilser and colleagues [111,112]. Instead of generating an 

ensemble of actual conformations, a statistical mechanics 

approach is used. The COREX algorithm generates states 

with all possible combinations of locally unfolded or folded 

segments, and the energies of these states are estimated. In 

this approach, the energetic couplings between residues can 

be determined. Using energetic perturbations, the method 

reveals the cooperative network of the protein, and it can 

also determine the global allosteric response to mutations 

[113]. A remarkable conclusion arising from this approach is 

that cooperative coupling between sites does not require the 

existence of a specific energetic pathway. Instead, such cou-

pling can be explained by the hierarchy of energetically ex-

cited states in the native ensemble. The validity of the ap-

proach was experimentally confirmed by creating a new al-

losteric effect by increasing the probability of some locally 

unfolded states in adenylate kinase, without changing the 

native structure [114]. 

2.11. Energy Propagation in Proteins 

An allosteric effect can be regarded as a local energetic 

perturbation of a protein, which then propagates within the 

protein matrix to eventually reach the substrate site [115]. 

Several studies have been devoted to the investigation of 

energy transmission processes within proteins. The investi-

gation of vibrational energy flow on all-atom models [116] 

found that the flow is anisotropic and the protein can be ap-

proximated as a percolation cluster [117] with a fractal di-

mension ~2.5. Energy is transferred between vibrational 

modes via anharmonic coupling. Based on a similar normal 

mode analysis, frequency-resolved communication maps 

were constructed for myoglobin [118]. At low frequencies, 

modes are global, and some channels are observed that could 

transfer energy away from the heme group. The communica-

tion map resembles the contact map. At higher frequencies, 

however, the map is very frequency-dependent. It should be 

noted that energy transfer by these processes is typically 

much faster (on the picosecond time scale) than most allos-

teric processes, therefore the relevance of these energy flow 

channels to allostery is uncertain. 

Energy flow was also studied by elastic network models. 

Using an anharmonic model, it was shown that “discrete 

breathers”, localized vibrational modes easily form in pro-

teins at the stiffest regions, and are able to pump and store 

energy from neighboring sites. Thus, energy can ‘jump’ from 

site to site via this mechanism, often covering long distances 

[119,120]. In a Gaussian network model, the correlations 

between the energy fluctuations of residues were calculated, 

and were found to define an interaction pathway which was 

similar to the pathway defined by the co-evolving network of 

residues in the PDZ domain [121]. 

Energy flow within proteins was also investigated by a 

number of MD techniques. In the method of anisotropic 

thermal diffusion, a single amino acid is suddenly heated to 

300 K while the rest of the protein is at 10 K, and the diffu-

sion of heat within the protein is monitored [122-124]. In 

pump-probe MD, selected atoms are excited by oscillating 

forces, and the transmission of the oscillations to other parts 

of the protein is monitored [125]. Similar methods are based 

on measuring the times energy is transmitted from the site of 

perturbation to other residues [126,127], and the time corre-

lations of the energy flow between residues [128]. Although 

the perturbations used in these methods may be unphysically 

large, all these methods reveal the anisotropy and pathways 

of intra-protein energy transmission. Often, the communica-

tion pathways found by these methods are similar to those 

identified by other methods such as SCA. 

A method has been developed to quantitate the local en-

ergetic frustration in proteins [129]. ‘Frustratograms’, net-

works of minimally and highly frustrated residue pair inter-

actions, were calculated for a number of proteins, and it was 

shown that the regions that reconfigure during an allosteric 

conformational change tend to be enriched in patches of 

highly frustrated interactions [130]. This and similar findings 

have led to the idea that intra-protein communication may 

occur via a front of highly frustrated residues, and ligand 

binding may induce a flipping of residues within a ‘frustra-

tion tube’ [28]. 

Our current understanding indicates that allosteric 

changes may have two major molecular mechanisms. In al-

losteric proteins where signaling involves only a small num-

ber of amino acids, a switch-type conformational change is 

typical. When allosteric signaling involves a large number of 

amino acids signals usually propagate at multiple, seemingly 

fuzzy trajectories which tend to converge at inter-domain 

boundaries. While protein segments involved in switch-type 

allosteric changes may be more rigid, protein segments har-

boring multiple trajectories may be more flexible. Some pro-

teins may have a mixture of the above two mechanisms for 

the propagation of conformational changes. If the binding of 

an allosteric effector makes certain protein segments more 

rigid, the signal may propagate by a mechanism closer to the 

first, switch-type mechanism, resulting in an efficient, salta-

toric signal transduction. This can be conceptualized as the 

propagation of a ‘rigidity-front’ [1,45,131]. The ‘rigidiza-

tion’ of a protein segment may accelerate the propagation of 

the allosteric change within the segment and induce similar 

changes in the neighboring segment. Rigidity front propaga-

tion may use sequential energy transfers [22,120], and thus 

may significantly increase the speed of the allosteric change 

[1,45]. The rigidity front propagation model combines ele-

ments of ‘rigidity propagation’ [132-134] with the ‘frustra-

tion front’ concept of Zhuravlev and Papoian [28], and it is 

in agreement with the recent proposal of Dixit and Verk-

hivker [135] suggesting an interaction network of minimally 

frustrated (rigid) anchor sites and locally frustrated (flexible) 

proximal recognition sites to play a key role in allosteric 

signaling. 

2.12. Finding Allosteric Sites by Network-Based Methods 

Discovering new allosteric sites in proteins opens up a 

new way of designing more specific drugs [87]. Thus, it is of 

interest to develop methods that can identify allosteric hot 
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spots on protein surfaces [136,137]. Communication path-

ways predicted by SCA were used to find allosteric hot spots 

in dihydrofolate reductase (DHFR), and a chimeric protein 

was created by inserting a light-sensitive domain into DHFR 

at a predicted allosteric site, thereby obtaining an enzyme 

that can be regulated by light [84]. As a continuation of this 

experiment, it was shown by the same method that the set of 

all allosteric hot spots is almost identical to the set of surface 

sites connected to network defined by SCA, and a similar 

conclusion was made about a PDZ domain [85]. These find-

ings also give an insight into how new sites for allosteric 

regulation may naturally evolve. 

2.13. Limitations of Protein Structure Networks for the 
Study of Allosteric Communication 

Studying allosteric communication by network analysis 

of protein structure graphs is a powerful approach based on 

an intuitive concept, and has yielded plausible and occasion-

ally, experimentally validated results. However, it is not 

without limitations. 

As we have seen, there are many ways of defining intra-

protein networks, and not all methods give the same result. 

An MD based study using restraints from NMR experiments 

showed that the network obtained by mapping structural 

changes differs from that obtained from dynamical changes, 

and both are different from the co-evolving network obtained 

by SCA (although the overlap between the SCA and the dy-

namical network is larger) [138]. The network obtained by 

mapping torsion angle correlations is also different from that 

obtained from position correlations [110]. The hubs in a 

network obtained from Lennard-Jones energies tend to be 

located in the protein core, while those defined in the net-

work based on full interaction energies tend to be at the sur-

face [46]. 

A network constructed from a single, static structure can-

not account for conformational changes. Communication 

pathways may not always pre-exist or may only be present in 

a scarcely populated subset of the native ensemble, thus eas-

ily evading detection even via ensemble-based methods. It 

was shown that the full communication path only gets as-

sembled in Met-tRNA synthase when both substrates are 

bound [59]. Methods based on MD simulations yield net-

works reflecting different time scales of events, from the 

picosecond [126] to the tens of nanoseconds [110] range. In 

an MD study based on torsion angles, correlations between 

distant side chains were seen without a correlated chain of 

residues between them [110]. In this case, the correlation is 

probably mediated by events on a faster time scale that is not 

captured by the method. 

Communication pathways built from residue-residue con-

tact-based protein structure networks often lack a true physi-

cal basis (with the exception of elastic networks). Different 

types of perturbations may activate different communication 

pathways within a protein; e.g. a targeted, strong perturba-

tion elicited by ligand binding may get propagated differ-

ently than thermal noise from the solvent [58]. Protein struc-

ture networks often do not take into account the differences 

in these perturbation types. 

Most network-based methods to reveal communication 

pathways do not take side chain rotations into account, even 

though these have been shown to be involved in allosteric 

communication via rotamer population shifts 

[89,110,138,139]. Side-chain rotations generate their own 

network, which is impossible to map out from a static struc-

ture [140]. Many methods only use C  coordinates, although 

it has been shown that side chains should be included for 

best results [70]. 

All intra-protein network construction methods consider 

residues as nodes in the network. Although this is an obvious 

choice, residues have widely different sizes and physico-

chemical properties, which may bias the results of the analy-

sis. For example, hubs are very often aromatic residues [57], 

which is at least in part due to their bulkiness [40]. In fact, 

residue types have different network properties due to their 

physico-chemical differences [141,142]. It was shown that a 

graph with chemical groups (groups of chemically similar 

atoms) as nodes is more suitable for the analysis of MD 

simulations than residue-based graphs [143]. 

Allostery itself may occur by a number of mechanisms, 

involving large or small or no conformational change, driven 

by enthalpy (structure), entropy (dynamics) or both [33], and 

the time scale of the allosteric change may also vary over a 

wide range. The protein may be highly modular or may con-

sist of only a single, rigid domain. Ideally, the choice of 

method to describe communication pathways should depend 

on the particular protein, as well as the type and time scale of 

the allosteric change under study. 

Even though network construction methods will always 

yield some communication network, allosteric ‘information 

transmission’ may in some cases not involve any particular 

pathway at all, as suggested by the ensemble view of allos-

tery [144]. This may typically be the case for proteins where 

disordered regions or domains optimize allosteric coupling 

[45,144], or where significant segments of the protein struc-

ture are extremely rigid [1,45]. Network-based methods to 

reveal allosteric pathways may have difficulties with han-

dling significant disorder (i.e. extreme flexibility, plasticity) 

or extreme rigidity. 

Finally, intra-protein networks usually do not include 

solvent molecules, even though they may be part of the al-

losteric pathway. It has been shown that water molecules at 

the interface between the subunits of hemoglobin carry a 

large part of the energy and are probably involved in allos-

teric communication [145]. 

Future research will probably yield more advanced meth-

ods that will surmount some of the weaknesses of existing 

methods. Despite the limitations, the findings of many net-

work-based analyses of allostery have been supported by 

experiments, and the network view of proteins offers a useful 

framework for the discussion of allosteric processes. 

3. PROPAGATION OF SIGNALS IN CELLULAR 
NETWORKS 

The propagation of allosteric signals is not limited to sin-

gle protein chains. The classical models of allostery describe 

allosteric effects in oligomeric proteins [23,24]. Network 

models of allosteric signal propagation have been applied to 

multimeric protein complexes [49-52]. Many of the exam-

ples of the preceding sections were also protein complexes. 
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Cellular function can be described in terms of cellular 

networks such as protein-protein interaction networks, signal 

transduction networks, gene transcription networks, meta-

bolic networks, etc. [1,146,147]. Evolution has optimized the 

cellular machinery to rapidly respond to changing conditions 

by the use of modular functional organization and large mul-

timolecular assemblies. The binding of an allosteric effector 

to one protein may induce conformational or dynamic 

changes in adjacent proteins. The propagation of conforma-

tional changes is usually anisotropic and traverses across a 

pathway, thereby facilitating signal transduction over large 

distances (hundreds or thousands of angstroms). Thus, bind-

ing to a protein may elicit a limited, specific, and distant 

functional change in the network [15,33,115,148].  

A prime example of such functioning is the gigantic Me-

diator complex, which relays signals from specific DNA 

regulatory elements to initiate gene-specific transcription 

hundreds of angstroms away [149,150]. However, long-

range signaling does not necessarily require a giant complex, 

since the signal can also propagate in a stepwise manner, 

where only two nodes are involved in each signal transmis-

sion step. As an example of specific propagation of long-

range changes, Maslov and Ispolatov [151] used the law of 

mass action to calculate the effect of a two-fold increase in 

the expression of a single protein on the free concentration of 

other proteins in the yeast interactome. Despite of an expo-

nential decay of changes, there were a few highly selective 

pathways where concentration changes propagated to a 

larger distance [151]. The perturbation dynamics of signaling 

networks was extensively analyzed including ~10,000 phos-

phorylation events in an experimental study of yeast cells 

[152]. The size of the human interactome has been estimated 

to have 650,000 interactions [153]. Though several datasets 

have been published in the last decade [154-157], we are still 

a long way from deciphering the full complexity of the hu-

man interactome. Human signaling networks extend this 

complexity by the inclusion of directed and conditional in-

teractions, as well as microRNAs [1]. 

The number of possible regulatory combinations for a 

given gene increases dramatically with an increase in input 

complexity and network size. For example, with 100 genes 

and 3 inputs per gene, there are about a million input combi-

nations for each gene in the network, resulting in 10
600

 dif-

ferent network wiring diagrams [158]. Systems-level mo-

lecular networks have a 100-fold larger size. Estimates of the 

number of possible states of the yeast interactome range 

from 10
7,200

 to 10
79,000,000,000

 [159], which are all unimagina-

bly high numbers. The number of possible states of the hu-

man interactome, which is an order of magnitude larger, 

must be even higher. At this level of system complexity, 

current descriptions of network dynamics contain several 

simplifications, e.g. they neglect node-specific delays, dif-

ferences in individual dissipation patterns, effects of water, 

or molecular crowding. Most importantly, most current net-

work-level cellular signal transduction models do not take 

into account the highly anisotropic nature of the perturbation 

propagation inside protein structures [115]. Construction of 

atomic-level resolution protein-protein interaction and sig-

naling networks, with interacting 3D protein structures 

bound or docked at their experimentally shown or predicted 

binding sites, will be a major step towards high-resolution 

signal transduction models to understand long-range allos-

teric action. This step will add a new dimension of informa-

tion especially to protein-protein interaction networks, which 

at present mostly contain probability-type interactions lack-

ing structural and signal propagation details. A few protein-

protein interaction networks containing 3D protein structures 

have already been assembled [160-163], providing initial 

steps towards this goal. 

4. ALLO-NETWORK DRUGS: EXTENSION OF THE 
CONCEPT OF ALLOSTERIC DRUGS TO CELLU-

LAR NETWORKS 

Traditional, orthosteric drugs bind to active sites of en-

zymes. However, their selectivity is hard to ensure as pro-

teins acting on the same substrates (e.g. protein kinases 

which all use ATP) have similar active sites. To circumvent 

this problem, a number of allosteric drugs have been devel-

oped, mainly for seven transmembrane receptors, GPCRs 

[11,14,164-167] (see also other papers of this issue). Be-

cause allosteric drugs bind to sites different than the active 

site, they can be more specific, and thus usually have fewer 

side effects. Furthermore, allosteric drugs allow fine modula-

tion of function instead of the inhibition of the protein 

achieved by most orthosteric drugs. 

The combination of the concepts that intra-protein allos-

teric communication can be described via protein structure 

networks and that cellular function can be understood in 

terms of protein-protein interaction and signaling networks 

inspired a novel suggestion for drug target discovery: allo-

network drugs (Fig. (1), [15]). In this concept, instead of 

targeting a malfunctioning protein directly, a different pro-

tein in the cellular network neighborhood is targeted by the 

allo-network drug. The concept urges that drug discovery 

should harness the long-distance allosteric signal transduc-

tion pathways created by evolution to extend the scope of 

drug discovery targets. In allo-network drug action, the bind-

ing of the drug triggers a pathway of conformational (or dy-

namic) changes over a segment of the protein-protein inter-

action or signaling network, finally reaching a target protein, 

where it may then, for example, enhance or inhibit another 

pathway of propagating conformational changes. Because 

pathways evolved by nature are limited and specific, allo-

network drugs have the potential to be highly selective and 

disease-specific. This approach may dramatically increase 

the number of target proteins that can be considered as drug 

targets. 

Earlier works already pointed towards an allo-network 

type drug action, like the suggestion of inter-protein propa-

gation of allosteric effects [10,168] and the possible use of 

such an effect in drug design [7]. In fact, drugs that can be 

considered allo-network drugs already exist. Combination 

therapies and multi-target drugs combine multiple effects, 

often at places distant from the malfunctioning protein in the 

cellular network [2]. Examples from cancer drugs include B-

RAF and MEK combination therapy [169,170] and rapamy-

cin/FKBP12, an inhibitor of the mTORC1 complex 

[171,172]. Moreover, drug-target network studies revealed 

that in more than half of the established 922 drug-disease 

pairs, drugs do not target the actual disease-associated pro-

teins, but bind to their 3
rd

 or 4
th

 neighbors. However, the 
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Fig. (1). Allo-network drugs. The top part of the figure illustrates the protein structures of the allo-network drug target containing the pri-

mary binding site (green circle), a ‘transmission’ protein, and the final target. The bottom part of figure illustrates the positions of the same 3 

proteins in the human protein-protein interaction or signaling network. The red ellipse illustrates the ‘action radius’, i.e. the network perturba-

tion induced by the primary target. In the top part, signal propagation (illustrated by the light green arrows) extends beyond the original drug 

binding protein and affects two neighboring proteins in the network via specific interactions. The pharmacologically active final target is 

marked by a red asterisk. Orange arrows illustrate an intracellular pathway of propagating conformational changes, which is disease-specific 

in case of successful allo-network drugs. Allo-network drugs allow indirect and specific targeting of key proteins by a primary attack on a 

‘silent’ protein which is not involved in major cellular pathways. Targeting ‘silent’, ‘by-stander’ proteins, which specifically influence phar-

macological targets, not only expands the current list of drug targets, but also causes much less side-effects and toxicity. (The color version of 

the figure is available in the electronic copy of the article). 

 

distance between drug targets and disease-associated pro-

teins was regarded as a sign of palliative drug action [3,13], 

and the expansion of the concept of allosteric drug action to 

the interactome level has been formulated only recently [15].  

Thinking in network terms, the action of drugs can be 

perceived as a network perturbation. The drug-induced at-

tack either destroys the network of infectious or cancer cells, 

or shifts the pathophysiological network status back to nor-

mal [115,173-175]. Perturbation mediators in anti-infectious 

or anti-cancer therapies are often at cross-roads of cellular 

pathways. On the contrary, in other diseases such as diabetes 

or neurodegenerative diseases, efficient drug targets are not 

directly involved in major cellular pathways but indirectly 

influence them in a highly efficient manner [1]. Thus, the 

indirect but highly directed action of allo-network drugs can 

achieve specific, limited changes at the systems level, with 

fewer side-effects and lower toxicity than those of conven-

tional drugs [15]. In agreement with this assumption, drugs 

with targets less than 3 steps (or more than 4 steps) from a 

disease-associated protein were suggested to have more side-

effects and to fail more often [176]. However, rational drug 

design proceeded in the opposite direction, identifying drug 

targets closer to disease-associated proteins than earlier [3]. 

The recently observed reversal of this trend may be more 

productive. Allo-network drugs point exactly to this direc-

tion. 

5. ALLO-NETWORK DRUGS AS SPECIFIC EFFEC-

TORS OF DISEASE-AFFECTED HUMAN CELLS 

Human cells seem to have developed a larger complexity 

of their networks than other organisms. This is especially 

true for signaling networks, where major signaling pathways 

have all possible crosstalks in human cells, while the same is 

not at all true in C. elegans or in Drosophila [177]. The 

complexity of regulation also increased through additional 

binding factors, as, for example, apparent in the structure of 

the transcriptional Mediator mega-complex [149,178]. 

Not only the static network structure but network dynam-

ics also increased in human cells. The variability of human 

protein-protein interactions is much larger than that seen in 

other interactomes. Besides single-nucleotide polymor-

phisms, alternative splicing, addition of N- or C-terminal 

tags, partial proteolysis and other post-translational modifi-

cations (such as phosphorylation), as well as changes in pro-

tein expression patterns may dramatically re-configure pro-

tein complexes [179]. Moreover, the human interactome 

seems to have a higher proportion of 'sticky' proteins leading 

to more promiscuous interactions than the E. coli or S. cere-

visiae interactomes [180]. As an additional factor of network 

dynamics, the human interactome is enriched with disor-

dered proteins, causing dynamically fluctuating, ‘fuzzy’ in-

teraction patterns [45,181].  
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The increased inter-pathway signaling, as well as the 

coupled large assemblies, all extend the propagation pathway 

repertoire of inter-molecular allosteric changes. Complex 

organization is helped by increased modularity, but increased 

variability and disordered proteins help to cross module 

boundaries and amplify intra- and inter-protein allosteric 

relays [148]. Thus, allo-network drug-like action occurs 

most where it is needed most: in human cells.  

Promising allo-network drugs should interfere with dis-

ease-specific pathways [1,15]. Targeting disease-induced 

dynamical changes in molecular networks may be focused 

on transient interactions specific to disease. Thus, allo-

network drugs may also provide a novel solution to uncom-

petitive, ‘interfacial’ drug action [173,182,183]. 

Finally, current drugs usually inhibit protein-protein in-

teractions [184]. Allo-network drugs may also trap a protein 

in its inactive state [87,185]. This way, the inter-molecular, 

long-range conformational change is prevented by the allo-

network drug. However, importantly, besides inhibition, 

allo-network drugs may stabilize, restore and/or activate a 

protein, its function, or one (or more) of its interactions 

[186]. 

6. POSSIBLE METHODS TO IDENTIFY ALLO-
NETWORK DRUG TARGETS 

As it is conceivable from Fig. (1), at the molecular net-

work level, allo-network drug design needs to solve three 

closely related problems. 1.) An appropriate pharmacological 

target protein playing a crucial role in shifting the disease 

state of the cell back to normal should be found. 2.) An ap-

propriate allo-network drug target protein should be found 

which is in the network neighborhood of the pharmacologi-

cal target protein but plays no major role in cellular proc-

esses and therefore its direct manipulation has no major side-

effects. 3.) A communication channel should exist between 

the allo-network target of point 2 and the pharmacological 

target of point 1, i.e. the changes of the allo-network target 

should selectively propagate towards the pharmacological 

target in the atomic-resolution network structure.  

Since the above points 2 and 3 are related and set rather 

stringent requirements for the allo-network drug target, 

search procedures can be greatly facilitated by increasing the 

resolution of data on cellular networks (the interactome 

and/or the signaling network) to atomic or amino acid level. 

To obtain a map of a protein complex at atomic resolution, 

docking of 3D protein structures and the consequent connec-

tion of their protein structure networks are needed. A few 

protein-protein interaction networks containing 3D protein 

structures have already been assembled [160-163], providing 

initial steps towards this goal. These efforts may be extended 

by mapping the protein structures into low-resolution EM 

density maps [187]. Thus, allo-network drug targeting re-

quires the integration of our knowledge on protein structures, 

molecular networks, and their dynamics, focusing particu-

larly on disease-induced changes. The identification of 

promising drug targets requires a deep understanding of how 

the cellular networks (interactomes and signaling networks) 

work, along with detailed structural knowledge of the pro-

teins and complexes involved. To map the cellular networks 

at the atomic resolution level, experimental structural and 

functional data need to be combined with modeling tools to 

predict which proteins interact and how [188]. Construction 

of these atomic level cellular networks should also take into 

account that proteins in different conformations may interact 

with different partners and different drug molecules; there-

fore, dynamic protein-protein interaction [161] and signaling 

networks, as well as conformation-dependent drug-target 

networks [189] have to be used. 

We list a few possible methods to define allo-network 

drug target sites and allo-network pathways to the pharma-

cological targets in cellular networks at atomic level resolu-

tion (Fig. (2)). 

• Central residues play a key role in the transmission of 

allosteric changes [65,71,95,97,101,102,127,135,190-

193]. We may use a number of centrality measures [194], 

including perturbation-based or game-theoretical as-

sumptions [115,195], to find the level of importance of 

proteins and pathways in interactomes and signaling net-

works, and important amino acids in their extensions to 

atomic level resolution [69]. 

• At both the molecular network level and its extension to 

atomic level resolution, we may extract network hierar-

chy [69,196-201] to assess the importance of various 

nodes (proteins and/or amino acids). 

• We may find nodes or edges controlling the network by 

the application of recently published methods [201-207]. 

• Network-based analysis of perturbation propagation is a 

fruitful method to identify intra-protein allosteric path-

ways [21,44,45,59-61,71,93,97,102,111,127,208]. A suc-

cessful candidate for the inter-protein allosteric pathways 

involved in allo-network drug action disturbs network 

perturbations specific to a disease state of the cell at a site 

distant from the original drug-binding site. Perturbation 

analysis [115,195] applied to the atomic-level-resolution 

interactome in combination with disease-specific protein 

expression patterns may help the identification of such 

allo-network drug targets.  

• A general strategy for the identification of allosteric sites 

may involve finding large correlated motions between 

binding sites. This can reveal which residue-residue cor-

related motions change upon ligand binding, and thus can 

suggest new allosteric sites [209] even in integrated net-

works of protein mega-complexes. 

• Reverse engineering methods [158] allow us to discrimi-

nate between ‘high-intensity’ and ‘low-intensity’ com-

munication pathways both in molecular and atomic level 

networks, and thus may provide a larger safety margin 

for allo-network drugs. 

• Combination of evolutionary conservation data has 

proven to be an efficient predictor of intra-protein signal-

ing pathways [60,85,210-212]. Similar approaches may 

be extended to protein neighborhoods helping to find 

starting sites for allo-network drug action. 

• Disease-associated single-nucleotide polymorphisms 

(SNPs; [213]) and/or mutations [214] may often be part 

of the propagation pathways of allosteric effects. In-

frame mutations are enriched in interaction interfaces 

[214], and provide an interesting dataset that could be
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Fig. (2). Methods to find allo-network drugs. All middle segments and notations of the figure are the same as those explained in the legend 

of Fig. (1). (Top part: protein structures; green circle: allo-network drug binding site; light green arrows: signal propagation; red asterisk: 

pharmacologically active target; orange arrows: disease-specific pathway; bottom part: protein-protein interaction or signaling networks; red 

ellipse: ‘action radius’.) Boxes highlight the various network- and system-based methods helping the identification of allo-network drugs. 

(The color version of the figure is available in the electronic copy of the article). 

 

used to predict the existence of allo-network drug bind-

ing sites. 

 We also give a few additional hints and considerations 

for successful allo-network drug finding. 

• Databases of allosteric binding sites 

(http://mdl.shsmu.edu.cn/ASD [215]) help the identifica-

tion of possible sites of allo-network drug action. How-

ever, allo-network drugs may also bind to sites not used 

by natural ligands, and inter-molecular allosteric effects 

may use other sites beyond those involved in intra-

molecular allosterism. 

• Drugs may fail when the cell bypasses drug action via a 

parallel pathway. Therefore, it is important to obtain a 

complete view of the network and to identify possible al-

ternative pathways [216]. 

• Because allo-network drugs have systems-level effects, 

cell-based assays can be used to find such compounds, 

similar to classical allosteric drugs. A number of experi-

mental methods can be used to find and analyze cellular 

system-level responses. This may involve extensive 

pathway profiling and high-throughput RNAi screening 

[217]. 

Despite the considerable challenges, detailed structural 

and functional knowledge and understanding of the path-

ways and information flow in the cellular networks at atomic 

level resolution will help to circumvent the long trial-and-

error process that was followed by evolution to develop allo-

network action. 

CONCLUSION AND PERSPECTIVES 

We predict that allo-network drug related systems-level 

and network analysis methods will develop to 'rational allo-

network drug design' protocols in the coming years, and 

hope that these efforts will result in novel drugs with greater 

selectivity and effectiveness. Allo-network drugs may in-

volve drug targets that are not related at all to usual drug 

target families.  

However, the development of rational allo-network drug 

design protocols requires 1.) a much more detailed under-

standing of cellular network structure and dynamics at the 

atomic resolution level including forward and backward 

loops; 2.) understanding allosteric signal propagation in net-

works and finding the key points where this dynamics can be 

influenced in an indirect but efficient and selective manner 

from a larger distance [31]; 3.) incorporation of disease-

specific systems-level data and data on dynamics and net-

work specificities [216].  

Despite the considerable challenges, the rapidity of the 

increase in systems-level data on healthy and diseased cells 

and the remarkable progress of network analysis methodol-

ogy in the last few years gives us strong hope that the ra-

tional development of allo-network drugs will be a widely 

pursued option of the drug industry in a few years. 
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